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The three components of the average temperature dissipation have been measured 
using a pair of parallel cold wires in an approximately self-preserving turbulent 
boundary layer. The mean square value of O,z, the temperature derivative in the 
longitudinal direction, is determined mainly by the use of Taylor’s hypothesis, 
following direct verification of this hypothesis at  a few locations in the flow. Mean 
square values of 0, and 0, z, the temperature derivatives in directions normal to the 
flow, were estimated mainly from the curvature of spatial temperature autocorre- 
lations. In the outer layer, the measurements indicate that Tz > yy > ?Fz, and the 
resulting distribution for dissipation leads to a good closure of the budget. In the 
near-wall region the measurements indicate that Tu > Tz > Tz. The ratios Of,/OTZ 
and ZPZ/Tz are as large as 13 and 7 respectively a t  y+ = 12, underlining the strong 
anisotropy in this region. The behaviour of the turbulent diffusion, estimated by 
difference, provides reasonable support for the accuracy of the near-wall temperature- 
dissipation measurements. Using existing data of near-wall distributions of the 
turbulent energy and of its dissipation rate, the timescale for the turbulent-energy 
dissipation is found to be approximately equal to that for the temperature 
dissipation. 

- _  

1. Introduction 
There have been numerous attempts at  obtaining turbulence models for the 

numerical calculation of the velocity field of a turbulent boundary layer. Two such 
models are the ‘k’ method and the second-order model. In the first of these 
(Launder & Spalding 1974), transport equations for the turbulent kinetic energy 
( = p, where 7 = u2 + w2 + w2) and E, the average dissipation of the kinetic energy, are 
constructed but the model is of the eddy-viscosity type, the magnitude of the effective 
eddy viscosity being set by the calculated values of? and E. In  second-order models, 
the second-moment correlations representing the turbulent transport of momentum 
or heat are obtained directly from their own transport equations. Shih & Lumley 
(1986) have developed a second-order model of near-wall turbulence and used it to 
calculate, inter ah, u2, v2, w* and B in a zero-pressure-gradient boundary layer. 

The extension of these models to the heat transfer case has received somewhat less 
attention perhaps because, as Launder (1976) points out, the correct calculation of 
the velocity field is an essential prerequisite to the temperature calculation. It is 
reasonable to suggest however that more accuracy can be achieved when modelling 
terms in a temperature-field calculation than for a velocity-field computation. For 
example, in analogy to the ‘k-e’ approach, transport equations can be written for 
p, where @ is the temperature variance and 4, the average dissipation of p. The 
pressure fluctuation does no appear in the equation for !j@ and all the terms of this 

- - -  
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equation are, in principle, measurable. Similarly, the transport equation for Ee is less 
daunting both from modelling and measurement viewpoints, than that for E (e.g. 
Launder 1976; Antonia & Browne 1983). It should also be noted that, regardless of 
whether a ‘k-e’ model or a second-order model is used, the timescales 7u( = g/E) 
and 78(  = 02/Ee) play important roles in the modelling. Since all the terms in Ed can 
be measured, the temperature timescale can be determined, thus obviating the need 
to assume isotropy, as is often done when the velocity timescale is obtained. 

In the present paper we focus our attention on the measurement of Ee throughout 
the boundary layer but especially in the near-wall region (y+ 5 30, where the 
superscript denotes normalization by the friction velocity u, and the kinematic 
viscosity v). Apart from being an important flow region, there is evidence (Launder 
1984) that an abandonment of the wall-function approach may lead to an improve- 
ment in calculating momentum and scalar transports in the immediate wall region. 
There are few measurements of all three components of the average temperature 
dissipation 36 in a turbulent boundary layer and, to our knowledge, no measurements 
in the immediate vicinity of the wall. The average dissipation Ee is defined by 

- 

Ee = a(T,+ef,+ef,), (1) 

where a is the thermal diffusivity, O,z = aO/az, 2 and z are in the longitudinal and 
spanwise directions respectively, y is in the direction normal to the wall. Simultaneous 
measurements of the three components of E,j were made in the logarithmic region by 
Sreenivasan, Antonia & Danh (1977) using two pairs of cold wires with fixed 
separations in the y- and z-directions. The size of this four-wire probe precluded 
measurements being made very close to the wall. Verollet (1972) obtained the three 
components of Ee using two-point-temperature-autocorrelation functions in the region 
y+ 2 30. In the previous two studies, the thermal layer developed within a nearly 
self-preserving velocity boundary layer. The main aim of the present investigation 
is to determine the behaviour of E6 in the region y+ 5 30 as accurately as possible 
with a view to providing useful data for turbulence modelling. Another aim is to 
quantify the departure of the temperature dissipation from local isotropy in the 
near -w all region. 

The present measurements of Ee are made in a boundary layer with approximately 
the same origins for velocity and temperature fields. Details of the experiment are 
given in $2 and the various methods used to estimate Ee are presented in $3. A 
discussion of how Ee and its components are distributed across the layer is given in 
94. The accuracy of Ee in the outer layer is considered in $5 by examining the balance 
in the completely measured budget of p. The accuracy of Ee in the near-wall region 
is indirectly checked in $6 by considering the behaviour of the turbulent diffusion 
which is inferred by difference. The distribution of the temperature timescale is 
discussed in 57. 

2. Experimental arrangement 
The suction-type wind tunnel used in the present investigation has a rectangular 

working section of 60 x 12 cm and a length of 1.8 m. The boundary layer develops 
over the aluminium floor (1.27 cm thick) of this section which can be heated using 
twelve Sierracin pads (0.1 mm thick) connected in series and arranged into two rows 
of six along the length of the section. These pads are bonded to the bottom of the 
aluminium plate and thermal insulation (45 mm thick) ensures that the heat loss from 
the back of the plate is small. All the pads are ax .  heated using a transformer operated 
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at 125 V and 8 A. Approximately one hour of tunnel running time is required to 
establish stable conditions. The plate temperature is continuously monitored using 
integrated-circuit temperature transducers located in small holes (5 mm diameter, 
3.8 mm deep) drilled in the back of the aluminium plate. These transducers are held 
in position using a highly conductive silicone compound (Unick UH-102). When a 
constant current is maintained through the transistor junctions of the transducer, 
the output is proportional to the absolute temperature. 

Measurements were made at a free-stream velocity (U, )  of 9 ma-' and the difference 
(T, - q) between the wall and the free-stream temperature was approximately 9.6 K. 
The boundary layer waa tripped using a 1.5 mm diameter rod placed on the floor of 
the working section, at x = 7 mm, where x is measured from the beginning of the test 
section. At x = 1.4 m, the boundary-layer thickness 6, defined as the distance from 
the wall where U =  0.995U1, and the thermal layer thickness S,, defined as the 
distance from the wall where (T, - F) a O.995(Tw - q), were approximately the same, 
equal to 28 mm. The friction velocity u, [ = ( ~ , / p ) t ,  7, is the wall shehr stress, p is 
the density] and the friction temperature e,( = &,/p,u,, &, is the wall heat flux, cp 
is the specific heat at constant pressure) were equal to 0.38ms-' and 0.42K 
respectively. The Reynolds number U,  6, /v  based on the momentum thickness S, is 
about 2000. The enthalpy thickness 

is 3.4 mm. Since the walls of the working section are parallel, the boundary layer 
develops in a favourable pressure gradient. The magnitude (v/u,") (dpldz) of this 
pressure gradient was - over approximately the last two-thirds of the working- 
section length. 

The temperature autocorrelation function, for zero time delay, 

where /3 ( = z,y,z) denotes the position and AB, the separation, was obtained with 
a pair of cold wires mounted on separate traversing units. One of the units provided 
displacements in all three directions while the other allowed displacement only in the 
y-direction. The displacements were read on dial gauges with a least count of 
0.01 mm. The cold wires (Pt-lO% Rh) of 0.63 pm diameter were aligned in the 
z-direction and had a length of about 0.50 mm. They were operated with in-house 
constant-current circuits. The combination of a small value (0.1 mA) for the current 
and the chosen experimental conditions resulted in only a small velocity sensitivity 
of the cold wires. This sensitivity was estimqted using an approach similar to that 
outlined by Wyngaard (1971). At y+ = 2, the error in efiz due to this contamination 
was about 0.01 yo. The temperature coefficient of resistivity of the 0.63 pm (Pt-10 % 
Rh) wire was found to be 0.0016 K-' (f5%) by calibrating the wire against a 
platinum resistance thermometer (least count = 0.01 K) in the core of a plane jet. 
Wire resistances were matched, during etching, to within f7%. The initial 
separation, in the y-direction, between the wires placed in the air stream was 
measured using a cathetometer with a least count of 0.01 mm. Subsequent separations 
were determined using the dial gauge on the traversing unit. The reproducibility of 
the initial separation was established, by repeating measurements, to be f0.03 mm. 

The mean temperature was inferred from the d.c. output of the constant-current 
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circuit with a TSI 1076 voltmeter. The signals from the two cold wires were passed 
through buck and gain units to offset the d.c. components and provide suitable 
amplification to enable the signals to be recorded on an F M  tape (HP3968A) at 
381 mm/s. The output voltages from the buck and gain units were differentiated with 
an analogue circuit designed to have unity gain at 1 kHz. The differentiated signals 
were also recorded. The signals were low-pass filtered (Krohn-Hite model 3322) 
before digitizing on a PDP 11/34 computer. The filter settings for the differentiated 
signals were determined during the course of the experiments, using a procedure 
similar to that outlined in Antonia, Satyaprakash & Hussain (1980). The spectrum 
of the signal a t  the output of the buck and gain unit was displayed on the built-in 
oscilloscope of a two-channel real-time spectrum analyser (HP3582A). The frequency 
at which this spectrum merged into the noise spectrum (obtained and stored in the 
spectrum analyser at the beginning of the experiment when the wires were in the free 
stream) was used as the cutoff frequency. The low-pass filter settings (f,) used for 
determiningpg, varied from 0.5 kHz (at y+ = 2) to 2 kHz (at y+ = 540). The sampling 
frequency,f,, equal to 2fc, was in the range 0.4fK to 0.7fK, wheref, is the Kolmogorov 
frequency. The shape of pa was not affected by the precise value off,. The magnitude 
of pg was only marginally affected : for example, a reduction of about 0.5 % occurred 
whenf, was increased from 0.2fK to 2.0fK. The 40 s duration of the digital records 
was sufficient for pg to converge to within k0.5 % of its final value. 

Velocity fluctuations u and v, in the z- and y-directions respectively, were meaaured 
at  the same time as the temperature fluctuation 8 with an X-probe/cold-wire 
arrangement. The hot wires of the X-probe (5 pm diameter, Pt-lOyo Rh, 1 mm 
length) were mounted in the (z, y)-plane with a separation of about 1 mm in the 
z-direction. The hot wires were operated with DISA 55M10 constant temperature 
anemometers at a resistance ratio of 1.8. A 0.63 pm cold wire (Pt-10 % Rh) was located 
0.7 mm upstream of the geometrical centre of the X-probe and orthogonally to 
the (2, y)-plane. The possible interference of the unetched wire stubs with the X-probe 
was avoided by the use of a 1.1 mm long cold wire. The signals from the X-wire and 
cold wire were passed through in-house buck and gain units and recorded on an 
analogue tape recorder before digitizing into a PDP 11/34 computer. The signals were 
low-pass filtered before digitizing at f, = 5 kHz. 

To account for the temperature sensitivity of hot wires, each instantaneous data 
point was corrected using the following relationship 

where A, B, n are the calibration constants in the free stream (temperature q), Tp is 
the hot-wire temperature and T the instantaneous fluid temperature. The hot-wire 
voltage time series was then converted into time series for u and v using the yaw 
calibration curve. The resulting distributions of Reynolds shear stresses agreed to 
within & 2 yo with those obtained when the wall was not heated, thus supporting the 
assumption that temperature was a passive marker of the flow. 

3. Different methods for determining the components of Ee 

Since it was important to establish the accuracy of P,, Ofy, 8Tz, several methods 
were used for their determination. In  particular, T, was determined by two different 
methods : 

(i) from the two-point temperature autocorrelation using either the approach of 
Rose (1966) or by fitting an osculating parabola to the correlation near the origin; 

_ _ _  
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FIGURE 1. 
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I 

(ii) from the time derivative of t9 using Taylor’s hypothesis; the hypothesis was 
checked by forming the difference between the cold-wire signals over a range of 
streamwise separation. 

(i) The variance e f i  was first determined by the approach used by Rose (1966). 
Using a Taylor series expansion for p, and msuming homogeneity, p, can be 
approximated, for small values of Ax, by (e.g. Hinze 1959) 

(Ax)B lim p, N 1--, 
A X + O  A; 

to order   AX)^. In  (4), Az is the longitudinal Taylor microscale for temperature 

A,= ( 2- *;I . 
(4) 

(5 )  

The correlation p,, obtained at  y+ = 180, is shown in figure 1 as a function of k / q ,  
where q is the Kolmogorov lengthscale (= v?/& where E is the average turbulent- 
energy dissipation determined by aasuming local isotropy and the mean-square value 
of the derivative of the longitudinal velocity fluctuation u).  The quantity (1 -p,) is 
plotted in figure 2 as a function of Ax/q. The intersection of the line of slope + 2 with 
the (1 -px)-axis yields values of 27.7 for A,/q and 0.07 K*/mme for ef,. The 
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FIGURE 2. Log-log representation of (1  -pa) aa a function of the separation Ap/T at y+ = 180. 
Symbols are as in figure 1 .  -, lines of best fit with a slope of +2. Note the shift in origin for 
the abscissa. 

corresponding turbulence Reynolds number ( A x a / v )  is 120. Although the accuracy 
of (4) increases as Az decreases, the data in figure 2 deviate from the line of slope 
+ 2 at very small separations. Similar departures were also observed by Rose (1966) 
and Antonia et al. (1984). These departures are due to an increase in the experimental 
uncertainty as p x  exceeds 0.98 for the first three data points (smallest A x / q )  in figure 2. 

Another estimate of Ax was obtained from the curvature of the osculating parabola 
to p x  for small values of Ax, viz. 

The broken line in figure 1 represents a cubic-spline least-squares fit to the data. The 
fit, implemented by computer, was made to satisfy apx /a (Az )  at Ax = 0 by reflecting 
the first few points about the origin. Symmetry of pz with respect to Ax is a 
consequence of the approximate streamwise homogeneity of the flow and was verified 
directly by measurement at a few values of x .  The second derivative waa obtained 
by numerically differentiating the best fit to pz,  for which A z / q  = 28. The corre- 
sponding osculating parabola is shown in figure 1. The value of Tx obtained from (6), 
was within 2 % of the value obtained using (4). This close agreement is only an internal 
consistency check of the data rehction since (4) and (6) are equivalent. 

(ii) The microscale Ax was obtained from the time derivative of 9 and Taylor’s 
hypothesis (a/& = - V-l a/at). The experiments of Antonia et al. (1984) have 
provided a direct check of this hypothesis on the centreline of a plane jet. A procedure 
similar to that of Antonia et al. was used to verify the hypothesis in the present flow. 
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FIGURE 3. Finite-difference approximation to TP aa a function of the separation Ablq a t  y+ = 180. 
Symbols are &B in figure 1. -, lines of best fit for 5 < AP/q < 9. Arrows indicate values obtained 
with (6). 

An average value for (aelat)e of 4.2 KB with a standard deviation of 4 %, was 
first estimated by repeating the experiment 13 times. Using Taylor’s hypothesis, with 

= 7.5 ma-’, B]rz was equal to 0.075 Ka/mmz and the corresponding value for A, was 
within 4 % of the value obtained by method (i). 

A more direct estimate of Tz waa then inferred from the difference A8 between 
two temperature signals separated in the z-direction, using the approximation 
8 = A 8 / h  for sufficiently small values of Ax. When Ax is too small (Ax/q ;5 4), a 
&liable estimate of 8, is difficult because of the systematic errors due to uncertainties 
in estimating the temperature sensitivity of the wires (Mestayer & Chambaud 1979; 
Browne, Antonia & Rajagopalan 1983b). Although we do not have data for 
h / q  > 10, we would expect TZ to decrease more rapidly in this range (as observed 
for example, by Browne, Antonia & Chambers 1983a) than over the range 
4 < Ax/q < 10. 

The difference A0 was formed on a computer for a number of separations. The 
quantity = Pz is plotted in figure 3 218. h / q .  A linear extrapolation to zero 
separation was carried’out in the manner outlined by Browne et al. (19834 for data 
in the range 5 < Ax/q < 9. This resulted in a value of 0.077 Kz/mmz for yz. This 
value and that obtained by method (i) were within f 7 yo of the value obtained using 
Taylor’s hypothesis. Since this agreement was found to apply, with approximately 
the same bounds of uncertainty at  other values of y+ (5, 30, 60 and 120), Taylor’s 
hypothesis was used to obtain yz at every location in the flow. 

Estimates of Tv and Tz were made at y+ = 180 via the correlation method and 
the finite-difference approximation (figures 1 , 2  and 3) .  Agreement between the two 
methods (table 1 )  was within 12% for Tg and Tz. As the extrapolation to zero 
separation in method (ii) is relatively inaccurate (Browne et al. 1983a), the correlation 
method was preferred in determining Tg and ef i .  

In the near-wall region, the estimation of yg via equations analogous to (4) and 
(6) would be grossly inaccurate because of the inadequacy of the homogeneity in the 
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Method 

(i) (a) Correlation 0.069 0.094 0.105 
(b) Method of Rose (1966) 0.070 0.096 0.107 

(ii) (a) Finite difference 0.077 0.105 0.116 
(b) Taylor’s hypothesis 0.075 - - 

TABLE 1.  Comparison of different estimates of Tp 

y-direction. To take into account the effect of relatively large gradients, in this 
direction, of p, approximations, such as (4) and (6), require modification. An 
appropriate starting point is the Taylor series expansion 

to order ( A Y ) ~ .  Using (7) and averaging with respect to time, expressions can be 
obtained for S(y + Ay) O(y) and [S(y + Ay)],. An expression for the autocorrelation 
function py can then be written?, using definition (2) as 

to order ( A Y ) ~ .  ThB second term inside the brackets becomes small (< 10%) in 
comparison to the first term at y+ = 9, so that yu can be estimated with sufficient 
- accuracy using expressions similar to (4) and (6) in the region y+ 3 9. To determine 
Oey for y+ < 9, (8) was applied at each value of Ay. The magnitude of a@/ay wtw 
ekimated, at  +Ay, by numerically differentiating a best fit to the @ measurements. 
The resulting values of Ty, calculated using (8), are approximately constant over a 
small range of Ay. The estimate of Bfu at y+ = 5, using (8) is shown in figure 4. 

4. Variation of Fz, 1 1  Fy and Fz 
Distributions of O?,, Of,, Ofz, normalized using 6 and the friction temperature 0, are 

shown in figure 5 as a function of y+ or y / b .  The error bars in figure 5 represent the 
uncertainties in the three components of dissipation. The large uncertainty in Ty for 
y+ < 20, is mainly associated with the determination of the initial separation 
Ay+(z 1). Further, the maximum correlation obtained was not quite unity 
(pp = 0.980) due to the contamination of the signal by electronic noise. A correction 
based on the r.m.8. values of the signals and the correlation between the noise 
components in different circuits, was applied to the measured correlation, thereby 
incretwing the magnitude of ps to almost unity (typically in excess of 0.99). 
- The three components of Eo in the region y+ 3 180 follow the inequality Tz > 
Ofy > yz. In  particular, the relative magnitudes of these quantities are similar to 
those - -  obtained by Sreenivasan, Antonia & Danh (1977). Defining K ,  = Ty/Tz and 
KB = Ofz/OrZ, Sreenivasan et al. obtained average values of Kl and K ,  equal to about 
1.2 and 1.5 respectively. The present average values of K ,  and K ,  are 1.4 and 1.6 
respectively. For 30 < y+ < 180, the present distributions are qualitatively similar 

- - -  

A similar expression waa used by Townsend (1956) for the correlation between u ( y )  and 
u(y+Ay) in the near-wall region. 
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FIQURE 4. Non-dimensional finite-difference approximation to T, in the near-wall region as a 
function of Ay+. x , y+ = 5. Arrow shows value at zero separation. 

- to those of Verollet (1972). Since Kl and K,  are both greater than unity, Fu > 
Oy, >-~ef,. The present values of Kl and K ,  varied from 1.2 and 1.4 at y+ = 180 to 
5 and 4 respectively at y+ = 30. Verollet's values of Kl and K ,  increased from 1 at 
- y + x  180 to about 2.5 and 2 respectively a t  y + x  30. In the region y+ < 30, 
OTY > y, > ys. A plausible qualitative explanation for the relative magnitudes of 
ef,, Or,, OfZ in the near-wall region is provided by an order-of-magnitude argument. 
If it is assumed that yp is of order @/A; where 6, is a suitable temperature scale 
and Ap is a Taylor microscale (Tennekes & Lumley 1972), the attenuating effect of 
the wall would be such as to affect A, more than A, or A,. One would expect A, to 
be least affected while A, should be significantly reduced. In  this context, the 
inequality A, < A, < A, appears reasonable. 

The above inequality reflects, at  least qualitatively, relative differences in the 
lengthscales of near-wall flow structures, which can be inferred primarily from 
available flow visualizations in this flow region. It is well established that the average 
spanwise wavelength of low-speed streaks is about 100 wall units (e.g. Smith & 
Metzler 1983). The average streamwise length of these streaks is of the order of lo00 
wall units. In his review, Cantwell (1981) reported an average value of 15 wall units 
for the distance from the wall to the centre of a streamwise vortex. The flow- 
visualization experiments of Iritani, Kasagi & Hirata (1985) have shown a close 
similarity between the structures of the thermal fields and momentum fields in the 
near-wall region. In particular, high-temperature streaks were found to coincide with 
low-speed streaks whereas low-temperature streaks corresponded with high-speed 
streaks. The present values of Kl and K ,  are in the range 9-85 and 2-7 respectively 
over the near-wall region, underlining the strong anisotropy of this region. This 
anisotropy is broadly similar to that observed for some of the measurable components 
_ _  of turbulent-energy - _  dissipation. For example, Klebanoff (1954) found that the ratio 
U ~ ~ / U ~ ,  is equal to ufz/utz and is as high as 10 at y+ x 14 ( y / b  = 0.005). 

The measured value of T, should be reduced due to the attenuation of the 
high-frequency part of the derivative spectrum resulting from the finite length of the 
cold wire. Wyngaard's (1971) correction for the attenuation of the temperature 
dissipation assumes isotropy and the Corrsin-Pao form of the three-dimensional 
temperature spectrum. This analysis indicates that the present values of T, (for the 
0.50 mm long cold wire, Z/q x 4.55, where q is the Kolmogorov microscale at 
y+ = 180) are underestimated by 30 % a t  y+ = 5 and 13 yo a t  y+ = 540. Since the 
analysis gives only an approximate indication of the attenuation, ef, was re-measured 

- -  
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FIGURE 
Y+ 

Distributions of mean-square values of tem_perature derivatives across th 
layer. Symbols are as in figure 1. Z/q = 4.55. +, OTz (Z/T = 1.82).1, error bars (see text). 

boundary 

with a shorter wire (Z/q = 1.8). The measured increaae in Tz due to the reduction 
in l / q  agreed, to within +8%, with that predicted by Wyngaard’s analysis. The 
reduction in Z also brings about a reduction in Z/d and one should strictly take into 
account a possible decrease in Tz due to increasing end-conduction effects (e.g. 
Lecordier et aZ. 1984). Since the contribution of yz to Ed is very small in the near-wall 
region (2.5% at y+ = 5 and 25% for y+ 2 180), we chose to neglect possible 
end-conduction errors, and consistently used values of Bfi which were obtained with 
the shorter wire (Z/q = 1.8). Because the measured spectra of 6,y and 6,z receive most 
of their contribution from the low-frequency part of the spectrum (e.g. Sreenivasan 
et al. 1977) we have assumed that there is negligible attenuation of Tv and Tz due 
to wire length. 

5. Budget of tp  in the outer layer 
The accuracy of Ze in the outer layer (y+ 2 180, y/S 2 0.25) was checked by 

measuring the remaining terms of the budget of and by examining the magnitude 
of the resulting imbalance. The transport equation for @ in a two-dimensional flow 
is (e.g. Corrsin 1953) - --- 

advection 1 production 2 turbulent diffusion 3 molecular gradient dissipa. 
diffusion 4 tion 5 
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FIGURE 6. Production, dissipation and imbalance of in the outer layer. All terms are normalized 
by (6 /U,q) .  0, production; V, total dissipation; 0, isotropic dissipation; +, imbalance for total 
dissipation ; *, imbalance for isotropic dissipation. 

The first terms within groupings 2, 3 and 4 were found to be small and have been 
ignored. The distributions of other terms in (9), made dimensionless by multiplying 
by 6/(u, O,"), are shown in figures 6 and 7 in terms of y/S. Terms 1,2 and 4 are estimated 
from least-squares fits to measurements of p/u, ,  ale," and F/O,. The fits were 
differentiated numerically and further fits were subsequently applied to the derivative 
data. The normal velocity r w a s  calculated using the continuity equation. Measured 
values of the (thermometric) heat flux a and the product were used for terms 
2 and 3. 

It is clear from figures 6 and 7 that the production and dissipation (figure 6) are 
nearly equal for y/6 > 0.25 and that advection and turbulent diffusion (figure 7) are 
approximately in balance for y/S > 0.6. The isotropic dissipation (Zo)iso = 3?,, is also 
plotted in figure 6. The total dissipation is larger than the isotropic dissipation by 
an amount varying from 25% at y/S = 0.7 to 40% at y/S = 0.1. 

The imbalance in the region y/6 > 0.25 is negligible, thus verifying the overall 
accuracy of the present measurements. Similar, but less detailed attempts to 
determine the budget of !j@ were made by Antonia, Danh k Prabhu (1977) and 
Verollet (1972) [see also Fulachier et al. 19821. Although Antonia et al. (1977) obtained 
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imbalance for isotropic dissipation. 

a satisfactory closure of the budget at their last measurement location, they 
approximated the dissipation with 3a(8fZ +Tg). The present measurements indicate 
that this approximation underestimates Zo by about 10 % for y/6 > 0.25. In Verollet's 
case, the diffusion was not measured but inferred by difference. It is difficult to assess 
the accuracy of this diffusion by checking the approximation 

I : ( F ) d y  x 0, 

since the magnitude a ( S ) / a y  is very small for y+ 2 40, and Verollet's measurements 
fall in this region. Relatively large values of a(#/ay) occur in the region y+ 5 40. 
Since the gain and loss, due to diffusion, are approximately in balance in the outer 
layer, one expects the gain of e'i, due to turbulent diffusion, in the region y+ 5 40 
to be approximately equal to the loss of due to turbulent diffusion. Checking (10) 
would therefore amount to checking the approximation 

The extent by which (1 1) is satisfied represents either a measure of the accuracy, in 
the near-wall region, of when the latter is measured directly or an indirect 
measure of the accuracy of other terms in the near-wall budget when P is inferred 
by difference. The extent by which (1 1) is satisfied by the present budget is discussed 
in $6. 

For y/6 < 0.25, the imbalance, for the present budget, increws slightly due to the 
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increased uncertainties in the measurements of production, diffusion and, in 
particular, dissipation. The imbalance that would have existed if isotropy had been 
used to  determine Ee is shown in figures 6 and 7. This imbalance is as large as the 
magnitude of the isotropic dissipation for 0.07 < y /6  < 0.2, reflecting the increasing 
anisotropy as the wall is approached. 

6. Behaviour of the budget close to the wall 
in the outer layer, achieved with all 

three measured components of Ee, was sufficiently encouraging to attempt the 
construction of the budget in the near-wall region. This construction would enable 
the turbulent diffusion to be infemd by difference. In  this region, the first, second, 
third, fifth and seventh terms of (9) can be neglected by using the boundary-layer 
approximation. The remaining terms can be made dimensionless by multiplying with 
V / U :  t?: and written in the form 

The satisfactory closure of the budget of 

production I turbulent molecular dieaipa- 
diffusion 11 diffusion 111 tion IV 

where Pr is the molecular Prandtl number (= v/a) .  Direct estimates? of I and I1 in 
the near-wall region are precluded in the present study due to the size of the 
X-wire/cold-wire arrangement. To calculate I, a was obtained by numerically 
integrating the mean enthalpy equation 

The behaviour of 8 and in the near-wall region can be obtained from the Taylor 
series expansion of mean and fluctuating components of velocity and temperature. 
Using the no-slip condition at the wall and the continuity equations for mean and 
fluctuating quantities, expressions for the components of term I can be written as 
(e.g. Antonia 1980) 

(14) 'v7sr = a, y+3+a4 ~+4+O(y+~) ,  

ZF = Pry++/3,y+4+/34y+~+o(y+8), 

where the coefficients a,, a4, /I, and p., may depend on Pr. The constants a, and a4 
can be related to /3, and b4 if the contribution from the left-hand side of (13) is assumed 
to be zero, which is equivalent to assuming that the total heat flux is constant, viz. 

- aT 
aY 

&, = wt? - a - = constant. 

The values for /3, and b4 were obtained from least-squares regressions of (15) to 
measurements of F in the range 1 < y+ < 10. Average values of - 1.78 x and 
7.4 x respectively. By comparison, Antonia (1980) 
obtained values of - 1.4 x and 5.6 x lo-" using Blom's (1970) measurements. 
The production term I (figure 8) in the region y+ < 15, estimated from a distribution 
of a calculated with (13) agrees to within 1 % with the estimate obtained by using 

were obtained for 8, and 

t Nagano & Hishida (1985) obtained I and I1 directly using a specially designed three-wire probe 
permitting near-wall measurements of w. 
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Y+ 
FIQURE 8. Budget of in the near-wall region. Hatched area is an estimate of the experimental 
uncertainty for the turbulent diffusion. All terms are normalized by (u/u:Oo). Numbers on the 
left-hand side of the ordinate correspond to the normalization with (S/u, 0:). 

(14) and (15) and assumption (16). It was encouraging to note that the measured 
production at  y+ = 50 agrees to within 8% with the value calculated with (13). 

At the wall, (9) satisfies the following condition 

representing an equality between the dissipation and the molecular diffusion, 
permitting the estimation of dissipation a t  the wall. This result also follows from the 
identity ae+ 2 a w + 2  

ay+2 - (ay+> - 2 -  , 

valid at y+ = 0. The contribution of the molecular diffusion to the budget is confined 
only to the region close to the wall (y+ < 30). The molecular diffusion plotted in figure 8 
was obtained by numerically differentiating the cubic-spline least-squares fit to the 
measurements of F. The maximum in the molecular diffusion occurs at y+ x 2.5. 
Interestingly, the maximum in the corresponding term of the near-wall turbulent- 
energy budget also occurs at y+ x 2.5 (Bernard & Berger 1984). It is also important 
to note that the resulting value of ?#p/ay+z)  at y+ = 0 is consistent with the 
measured values of (a6+/i3y+)2 at y+ G 5.  

The turbulent diffusion was inferred by difference. The shaded region in figure 8 
is our estimate of the error in the turbulent diffusion, the upper (TDl) and lower 
(TD2) bounds of this region corresponding to the lower and upper limits respectively 
of the range of the dissipation measurements. The distribution TD1 satisfies 
approximation (1 1) closely, the gain of !j@ representing about 95 yo of the loss. On 
this basis, TDl is a plausible distribution for the turbulent diffusion in the near-wall 
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Y+ 
FIGURE 9. Dissipation timescales of velocity and temperature. V, T#;  0, 7;; 0,  T,  

(from the data of Laufer 1954). 

region. This distribution compares well with that measured by Nagano & Hishida 
(1985) for y+ 2 12, both distributions indicating a loss of fdsB due to turbulent 
diffusion. For y+ < 12, Nagano & Hishide’s (1985) measurements indicate a gain in 
diffusion, as inferred in our study. However, the magnitude of this gain is insufficient 
to satisfy relation (11). 

7. Temperature timescale 
The - variation, across the boundary layer, of the temperature-dissipation timescale 

78 ( E 02/Ze) estimated from measurements ofBand of the total1 dissipation 28, is shown 
in figure 9. Also shown are estimates of 7; = B/(Z8)iso, calculated from measurements 
of @ and the isotropic dissipation (E8)iso. Whereas 78 increases nearly continuously 
across the layer, 7; is approximately constant in the region 10 5 y+ 5 100. In  the 
near-wall region, 7; is larger than 78-by a factor of about 10. Although the difference 
between 7; and 7 8  is smaller in the outer region, this difference is probably sufficiently 
important to be taken into account when modelling this region of the flow. 

Although the complete determination of the turbulent-energy dissipation 2 is 
considerably more involved than that of 28, it seemed useful to establish the 
relationship between 78 and the corresponding timescale T,  (= g/Z) for the velocity 
field. Although it has been established (Launder 1976) that the prescription R - = 
78 /7 ,  - = constant is neither sufficiently general nor reliable for inferring Ze, once q2, 
Oa and E are known, our enquiry into the magnitude of the ratio R in the near-wall 
region is important in view of the similarity between the momentum ind  thermal 
fields in this region and because of the possibility of substituting 78 for 7, in models 
of transport equations for the Reynolds stresses. To this end, we hrtve calculated 7, 

from Laufer’s (1954) measurements of and Z in the near-wall region of a fully 
developed pipe flow. Laufer measured five of the nine major terms of Z, and assumed 
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isotropy to estimate the remaining four terms. Townsend (1956) corrected Laufer’s 
measurements for the effect of the gradient of 2 close to the wall. These corrected 
values oft? have been used in our estimate of 7,. The distribution of 7, has only been 
obtained up to y+ x 40 (figure 9). The scales 7 0  and 7, are nearly equal and therefore 
R is nearly unity in this region. The experimental uncertainty associated with this 
ratio would reflect primarily the uncertainty of determining E and, to a lesser degree, 
the uncertainties in a and F. Substituting Kreplin & Eckelmann’s (1979) near-wall 
values of? for those of Laufer did not affect the distribution of 7,. 

Nagano & Hishida (1985) obtained a nearly uniform value of 0.5 for R in the 
near-wall region. This small value of R may be due to a possible overestimation of 
the temperature dissipation which was obtained by difference in their study. As noted 
earlier, Nagano & Hishida’s measurements of diffusion appear to be too small close 
to the wall; an increase in the magnitude of this diffusion term would result in a 
decrease in Ee and an increase in the value of R. 

8. Concluding remarks 
The three components of the temperature dissipation have been estimated from 

the temporal temperature derivative using Taylor’s hypothesis and from the cur- 
vature of the two-point temperature autocorrelations in the y -  and z-directions. In 
the outer layer (y /6  2 0.25), the magnitude of the components _ -  of - _  4 are such that 
8Tz > Tff > ?Fz and the average values for the ratios 8fff/8rz and 8TZ/8y, are about 
1.4 and 1.6 respectively. Although these values are based on only a limited amount 
of data (four points for y/6 2 0.25), they support previous results by Sreenivasan 
et aE. (1977). The negligible imbalance for the budget of in the outer layer suggests 
that the temperature dissipation has been measured with good accuracy in that 
region. 

In  the near-wall region, which is the main region of interest of this study, the 
relative magnitudes of the components of Ee underscore the increased departure from 
isotropy as the wall is approached. For example, the ratio of the total dissipation 
to the isotropic dissipation increases from about 2 at y+ = 40 to a value as large as 
30 at y+ = 2. Although the uncertainty band associated with the turbulent diffusion, 
obtained by difference, is relatively large, (1 1) is closely satisfied by the upper bound 
of our diffusion estimates. This gives an indirect but encouraging indication of the 
correctness of the Ee data. It would of course be desirable to measure the turbulent 
diffusion in the near-wall region. Such a measurement would necessitate the normal 
velocity fluctuation v to be obtained simultaneously with the temperature fluctua- 
tion. It is possible that a miniaturized version of the three-parallel-wire probe of Rey 
& BBguier (1977) can be used for this purpose. 

Molecular diffusion is comparable in magnitude to the turbulent diffusion in the 
near-wall region and becomes negligible only beyond y+ x 30. The limiting behaviour, 
as y++O, of the instantaneous temperature equation requires that the molecular 
diffusion balances the dissipation at the wall. 

The present measurements of Ee have enabled the temperature dissipation timescale 
to be estimated in the near-wall region. These estimates should be useful when, as 
the present computational trends indicate, the current wall-function treatment is 
replaced by a direct simulation of the transport equations in the near-wall region. 
In view of the close similarity observed (e.g. the flow visualization of Iritani et al. 
1985) between the velocity and thermal fields in the near-wall region, it is possible 
that the temperature-dissipation timescale can be used to model not only the 

- 



Temperature-dissipation measurements in a turbulent boundary layer 28 1 

temperaturc+pressure gradient terms in the heat-flux transport equations but also 
the pressure-rate-of-strain terms in the Reynolds-stress transport equations. The 
present results give R x I and provide reasonable support for the use of the 
temperature-dissipation timescale in second-order models for the near-wall region. 

The support of the Australian Research Grants Scheme is gratefully acknowledged. 
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